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Red and white wheats must be segregated for marketing purposes 
because they have different end uses. Identification of wheat color is not 
straightforward, and currently there is interest in characterizing red and 
white wheats using spectroscopic methods and chemical tests. The 
kernels of both red and white wheats exhibit natural fluorescence that can 
be readily viewed under UV light, although it is not possible to differ-
entiate the fluorescence spectra of red and white wheats by visual inspec-
tion only. Fluorescence emission spectra in the wavelength range of 370–
670 nm for 91 wheat samples consisting of 48 red (from 30 cultivars) and 
43 white (from 18 cultivars) were analyzed by partial least squares (PLS) 
and neural networks analyses (NNA). Samples included cultivars that 

were difficult to classify visually as well as wheat harvested after rainfall. 
Classification accuracies were ≈85% for calibration and ≈72% for the 
validation samples by both analyses. A plot of β-coefficient vs. wave-
length in PLS analysis indicated that fluorescence of red wheat cultivars 
was greater than that for white wheat cultivars at 425 (±20) nm wave-
length. Fluorescence of white wheat cultivars was greater than that for red 
cultivars at 587 (±35) nm. Fluorescence emission at ≈450 nm from wheat 
samples increased in intensity after treatment with NaOH. The increase 
was greater for red than for white wheat. Wheat harvested after rainfall 
also exhibited a slight increase in fluorescence. 

 
Red and white wheats must be segregated for marketing pur-

poses. Mixtures are usually discounted and some of the wheats 
are intended for different end uses. Both hard red and hard white 
wheat cultivars may be used for bread, but some white wheats are 
also used for Asian noodles. Identification of wheat color is not 
straightforward, and grain handlers and farmers are interested in 
characterizing red and white wheat by using rapid spectroscopic 
or chemical tests (Dowell 1997, 1998; Ram et al 2002a). 

Intrinsic fluorescence has been suggested for quantification of 
botanical components in wheat (Jensen et al 1982; Jensen and 
Martens 1983; Symons and Dexter 1993). Fluorescence micro-
scopic studies indicated a correlation of the autofluorescence with 
wheat hardness (Irving et al 1989), but these studies did not 
include samples of hard white wheat. Intense blue fluorescence of 
the aleurone cell walls of wheat is due to high concentrations of 
ferulic acid (Fulcher et al 1972; Fulcher and Wong 1980). Other 
fluorescence and UV absorption studies also indicate the presence 
of ferulic acid in cell wall fluorescence (Pussayanawin et al 1988; 
Akin 1995; Collins and D’Attilio 1996). McKeehen et al (1999) 
identified a potential association between phenolic acid concen-
trations and Fusarium resistance. Several other compounds in 
wheat were identified in these studies, but none were described as 
contributing to autofluorescence. 

Three emission bands in fluorescence from cereal flours have 
been reported (Zandomeneghi 1999). The most intense at ≈330 nm 
(excitation 280 nm) was attributed to amino acids. The band at 
430 nm (excitation 330 nm) was ascribed to tocopherol and related 
compounds, and the band at 540 nm (excitation 445 nm) was 
assigned to a xanthophyll. These results have not been corrobo-
rated. Flavonoids have been reported in wheat germ milling frac-
tions (Barnes et al 1987; Barnes and Tester 1987). 

The fluorescence of whole wheat kernels had not been examined 
previously. We were interested in examining differences in the 

surface emissions from red and white wheat kernels. Some other 
grains are segregated by fluorescence in breeding programs. For 
example, white and yellow oats are viewed in UV boxes by oat 
breeders, and annual and perennial rye grasses are segregated on 
the basis of fluorescence of the primary root during the early stages 
of germination. Also, neural network analysis (NNA) has been 
used recently to classify genetics of barleys based on phenolic 
finger prints (Gorodkin et al 2001). 

MATERIALS AND METHODS 

Wheat samples used in this study are listed in Table I (red 
wheat cultivars) and Table II (white wheat cultivars). Most of 
these samples were used in previous studies (Dowell 1997, 1998; 
Ram et al 2002a); the other wheat cultivars were harvested in 
2000-2002 and were obtained from Joe Martin, Kansas Agricul-
tural Experimental Station, Hays, KS. The color classes of wheat 
samples that were not obviously red or white were determined 
using the NaOH soak test (Ram et al 2002a). The sample set 
contained 11 samples that were difficult to color classify. Samples 
were stored at 4°C to avoid mold and insect infestation. 

Fluorescence 
Wheat kernels were viewed under long-wavelength UV light 

(360–400 nm), referred to as blacklight, in a Spectroline CX-20 
UV cabinet. For magnified viewing, a laboratory microscope with 
up to 50× magnification was used with a blacklight (model B-
100A, Ultraviolet Products, San Gabriel, CA) excitation. 

Fluorescence emission spectra were obtained from bulk samples 
using a FluoroMax-2 spectrofluorometer (Jobin Yvon Spex, Edison, 
NJ), with 1-nm resolution and 1.0-sec integration time. The 
instrument had one monochromator for excitation and one for 
emission. Instrument control and data acquisition were computer-
controlled and spectra were saved in Grams/32 (Thermo Galactic, 
Salem, NH). Fluorescence spectra of whole wheat kernels were 
obtained using a 10-mm path-length quartz spectrophotometric 
cuvette that held ≈30 kernels. No special adaptation to increase 
the signal from solids such as described by Zandomeneghi (1999) 
was used. Emission spectra (370–670 nm) were obtained with 
350 and 300 nm excitation. Broken kernels, straw, and chaff were 
removed, and only whole kernels were used. Most cultivars were 
scanned once, but more than one sample was used for a few 
cultivars, as noted in Tables I and II. 

PLS Analysis 
Fluorescence data of red and white wheat were analyzed using 

partial least squares (PLS) analysis (Martens and Naes 1989). All  
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TABLE I 
Partial Least Squares (PLS)a and Neural Network Analyses (NNA)b  

of 370–670 nm Fluorescence Emission Data for Red Wheat Cultivarsc 

Red Wheat Cultivar PLS Prediction NNA Output PE1 Value Red Wheat Cultivar PLS Prediction NNA Output PE1 Value 

Calibration setd   Ogallala 1.20 0.89 
2137 (1)f 1.35 1.32 Prowers  1.25 0.74 
2137 (2) 0.81 0.78 Scout66 1.12 0.88 
2137 (3) 1.25 0.83 Scout66-1 1.19 0.88 
2163 1.24 0.90 Tam107 1.86 0.38 
2172 1.25 0.88 Tam110 1.51 0.62 
2174(1) 1.15 0.83 Vista 1.19 0.85 
2174 (2) 1.19 1.00 Wesley  1.40 0.56 
2174 (3) 1.57 0.90 Yuma 1.17 0.95 
Akron (1) 1.16 0.99 Validation sete   
Akron (2 ) 1.16 0.84 2174-1 1.33 0.65 
Arapahoe-1 (1)g 1.05 0.93 2174-3 1.25 0.78 
Arapahoe-1(2) 1.07 1.09 Arapahoe-1 (3) 1.14 0.90 
Big Dawg-1 (1) 1.29 0.62 Arapahoe-3 1.17 0.87 
Big Dawg-1 (2) 1.30 0.72 Big Dawg-3 1.13 0.92 
HRS bleachedh,i 1.10 0.88 FGIS-1 1.67 0.29 
Ike-1 (1) 1.18 0.87 FGIS-2 2.41 -0.22 
Ike-1 (2) 1.00 1.28 KS75216-3 1.44 0.41 
Jagger (1)i 1.27 0.93 Ike-3 –1.13 0.15 
Jagger (2)i 1.06 0.92 Karl  1.50 1.33 
Jagger (3)i 1.38 0.59 KCI R/W 1.73 0.44 
Karl92i 1.30 0.77 Neeley 1.35 0.52 
KCI R/Wi 1.23 0.77 Pronghorn 0.73 1.04 
KS75216-1 1.39 0.53 Rampart 1.34 0.65 
KS84HW196 1.36 0.80 Scout66-3 1.20 0.75 

a PLS prediction value <1.41 indicates red wheat. 
b NNA output PE value 1 > 0.5 indicates red wheat. 
c All cultivars are from Kansas 1999-2002. Analysis of 350 nm excitation data. 
d Prediction values for the calibration set are those of cross-validation. 
e Independent values for the validation set are those predicted by the calibration model. 
f Numbers in parentheses indicate replicate spectrum number using this cultivar. 
g Cultivar name with -1 suffix harvested before rainfall; with -3 suffix harvested after rainfall. 
h Cultivar name unknown, not the name of the cultivar. 
i Contrasting color class appearance difficult to color classify. 

 
 

TABLE II  
Partial Least Squares (PLS)a and Neural Network Analyses (NNA)b  

of 370–670 nm Fluorescence Emission Data for White Wheat Cultivarsc 

White Wheat Cultivar PLS Prediction NNA Output PE2  White Wheat Cultivar PLS Prediction NNA Output PE2  

Calibration Setd   Validation Sete   
Argentf 2.41 1.29 Arlin (1)  1.83 0.93 
Arlin-1g 1.60 0.89 Arlin (2) 1.74 0.83 
Arlin-3 1.15 1.01 Betty (1) 1.50 0.61 
Betty (1)h 1.80 0.91 Betty (2) 1.60 0.58 
Betty (2) 1.36 0.44 Heyne (1) 1.17 0.32 
Heyne-1 (1) 1.59 0.88 Heyne (2) 1.32 0.10 
Heyne-1 (2) 1.34 0.48 Heyne-3 1.19 0.15 
Heyne-1 (3) 2.46 1.33 KS84HW196 1.50 0.55 
Heyne-1 (4) 1.37 0.51 KS96HW94 1.74 0.74 
Klasic 2.12 1.22 KS96HW10 1.38 0.39 
KS95H167 1.27 0.21 NuPlains-3 1.69 0.72 
KS96HW115 1.86 1.12 Oro Blanco-1 1.48 0.53 
Lakin 1.61 0.76 Oro Blanco-3 1.24 0.19 
NuPlains (1) 1.75 1.07 Rio Blanco (1) 1.91 0.97 
NuPlains (2) 2.24 1.17 Rio Blanco (2) 1.71 0.80 
Oro Blanco (1) 1.43 0.54 Trego (1) 1.62 0.67 
Oro Blanco (2) 1.46 0.42 Trego (2) 2.07 1.27 
Oro Blanco-1 1.34 0.59 Trego (3) 2.45 1.17 
White Eagle-1 (1) 1.62 0.83 White Eagle-1 (3) 1.67 0.76 
White Eagle-1 (2) 1.52 0.43 White Eagle-3 1.68 0.72 
White Chief-1 (1) 1.38 1.06    
White Chief-1 (2) 1.84 0.36    
White Chief-3  1.41 0.75    

a PLS prediction value >1.41 indicates white wheat. 
b NNA output PE value 2 > 0.5 indicates white wheat. 
c All cultivars are from Kansas 1999-2002. Analysis of 350 nm excitation data. 
d Prediction values for the calibration set are those of cross-validation. 
e Independent values for the validation set are those predicted by the calibration model. 
f Contrasting color class appearance difficult to color classify. 
g Cultivar name with -1 suffix harvested before rainfall; with -3 suffix harvested after rainfall. 
h Numbers in parentheses indicate replicate spectrum number using this cultivar. 
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data were mean-centered. Spectral data were analyzed by the Grams/ 
32 PLS model using the emission data in the 370–670 nm range 
(obtained with excitation at 350 nm) at 1-nm intervals (x-data) 
and appropriate constituent values (y-data) using a full cross-vali-
dation scheme. The assigned constituent values for red and white 
wheats were 1 and 2, respectively. The number of factors reported 
was obtained from PRESS (predicted residual error sum of squares) 
vs. the number of PLS factors plot corresponding to the lowest 
PRESS value obtainable with the least number of factors. This 
number of factors, which was close to the software recommended 
value, was evaluated as acceptable from actual vs. predicted and 
β-coefficient vs. wavelength plots. 

We divided our sample set into a calibration and a test (or vali-
dation) set of samples. The calibration set consisted of 33 red 
wheat and 23 white wheat samples in a total of 56 samples, and 
the validation set consisted of 15 red and 20 white wheat samples 
in a total of 35 samples. 

Neural Networks Analysis 
A software package (Professional II/Plus, Neuralware, Pittsburgh, 

PA) was used for data analysis on a back-propagation network 
(Hecht-Nielsen 1989; Wang et al 2002). Neural network models 
without any hidden layers were developed. Fluorescence emission 
data (370–670 nm obtained with 350 nm excitation) at 2-nm 

intervals were input as 151 processing elements (PE values or vari-
ables). There were two output values corresponding to red and white 
wheat and these were input as (1,0) and (0,1), respectively. The 
optimum neural network parameters were learning cycle of 10,000 
(179 cycles/spectrum), learning rate of 0.7, and momentum of 0.5. 
Optimization procedures for these factors have been described pre-
viously (Wang et al 2002). 

RESULTS AND DISCUSSION 

Fluorescence  
All cultivars of red and white wheats listed in Tables I and II 

exhibited natural fluorescence when viewed under UV light in a 
viewing cabinet. Compared with red wheat, white wheat appeared 
to have more intensity and a whiter fluorescence, which may be 
due to less quenching in the white wheat. This natural fluores-
cence was not uniform on the surfaces of the kernels. Under 
magnification, many kernels exhibited distinct patches of blue 
fluorescence, which may be due to portions of the aleurone layer 
being visible through the pericarp. Fluorescence variations among 
wheat kernels may also be due to morphological variation in the 
pericarp and nucellar organization, both of which have their own 
fluorescence characteristics (Fulcher et al 1972; Fulcher and 
Wong 1980; Irving et al 1989; McKeehan et al 1999).  

TABLE III 
Classification of Red and White Wheat Cultivars by Partial Least Squares (PLS) and Neural Network Analyses (NNA)  

of 370–670 nm Fluorescence Emission Spectra with Excitation at 350 nm 

PLS NNA 

Wavelength range 370–670 nm Wavelength range 370–670 nm 
Number of points 301 Number of points 151 
Number of factors used 2 Momentum, learn rate 0.5, 0.7 
Data preprocessing None Learn counts/spectra 179 
Number of calibration samples 56 (33 red, 23 white) Data preprocessing None 
Number (%) of red wheat spectra  

correct in calibration set  
(predicted value < 1.41) 

 
 

30 (91%) 

Number of calibration samples 
Number (%) of red wheat spectra  

correct (output PE value 1 > 0.5) 

56 (33 red, 23 white)  
 

32 (97%) 
Number (%) of white wheat spectra  

correct in calibration set  
(predicted value > 1.41) 

 
 

16 (70%) 

Number (%) of white wheat spectra correct 
(output PE value 2 > 0.5) 

Total calibration samples correct (NNA) 

 
17 (74%) 
49 (88%) 

Total calibration samples correct (PLS) 46 (82%) Number of validation samples 35 (15 red, 20 white) 
Number of validation samples 
Number (%) of red wheat spectra  

35 (15 red, 20 white) Number (%) of red wheat spectra  
correct (output PE value1 > 0.5) 

 
11 (73%) 

correct in validation set 
Number of white wheat spectra  

10 (67%) 
 

Number (%) of white wheat spectra correct 
(output PE value 2 > 0.5) 

 
15 (75%) 

correct in validation set 15 (75%) Total validation samples correct (NNA) 26 (74%) 
Total validation samples correct (PLS) 25 (71%)   

 

Fig. 1. A, Fluorescence emission spectra (obtained with 350 nm excitation) of kernels of red (R) and white (W) wheat cultivars: Scout66-1 (R), Arapahoe-1
(R), Klasic-1 (W), and Heyne-1 (W). B, Plot of β-coefficient vs. wavelength for red vs. white wheat classification by PLS of fluorescence spectra. 
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In a cross-section of a wheat kernel, a blue fluorescence similar 
to that observed on the surface was concentrated in the nucellus 
and aleurone layers which are both very fluorescent. A weak blue 
fluorescence was also dispersed in the endosperm, probably 
because the endosperm cell walls also contain low concentrations 
of ferulic acid and ferulates. It is possible that the fluorescence 
observed in this study may not be merely from the surface of the 
kernel because the incident UV light may penetrate into the kernel 
and cause fluorescence from inside the kernel to emanate out. 
Overall, the observed fluorescence was likely a function of 1) the 
types and concentrations of each fluorescent compound and the 
morphology of the several cell layers that comprise the outer struc-
tures (aleurone, nucellus, testa/seed coat, and the several pericarp 
layers) of each kernel, and 2) the physical characteristics of each 
kernel such as size, shape, and surface texture. All of these param-
eters very likely influenced the reflectance profile of each fluores-
cence spectrum, at least to a level of affecting the values utilized 
by the PLS and NNA procedures. 

Whole wheat kernels gave only weak fluorescence spectra, and 
the intensity and the wave characteristics were possibly affected 
by the packing and orientation of the kernels in the cuvette. Due 
to limited experimental resources, only one spectrum was recorded 
for each sample, although we made repeat measurements with 
repacks for a few samples (Tables I and II). Fluorescence emission 
with 350 nm excitation was more intense than with 300 nm 
excitation for all samples. Fluorescence emission data obtained 
with 350 nm excitation was used in PLS and NNA. Typical emis-
sion spectra from red and white wheat samples are illustrated in 
Fig. 1A. Red wheats exhibit stronger fluorescence intensity in the 
370–470 nm region than in the 470–680 nm region, while white 
wheats fluoresce more strongly between 470–680 nm than at 
370–470 nm. However, it was not always possible to discriminate 
between red and white wheat by visual examination of their fluo-
rescence spectra alone. The number of spectra obtained from dif-
ferent samples of the same cultivar is indicated in Tables I and II. 

PLS Analysis  
Fluorescent spectra of wheat samples were analyzed by PLS 

with and without normalization of the fluorescent intensity. 
Because of the large variation in the intensity of the fluorescence 
spectra, we thought it might be helpful to normalize the spectra 
and then analyze the modified data set by PLS or NNA. 

When all samples were included, normalization of the spectra 
helped convergence in PRESS values with increasing number of 
factors. Classification accuracies of PLS cross-validation results 
for the normalized set were 88% of all 91 samples (88% of 48 red 
wheat samples and 88% of the 43 white wheat samples). 

Initial attempts to develop a calibration model failed until 
several outliers were removed. Outlier samples usually arise from 
some incorrect measurement, whether it is in the concentration data 
(i.e., errors in the primary calibration technique, transcription errors) 
or in the spectral data (i.e., spectrometer error, sample handling 
procedures, environmental control such as temperature, humidity, 
etc.). In the simplistic approach we used for measuring fluo-
rescence of wheat kernels, orientation and packing of kernels in 
cuvette could lead to outliers. Including outlier samples also intro-
duces a bias to the model leading to incorrect predictions. Also, a 
calibration with a high value of N/V (≈10), where N is the 
number of samples and V is the number of variables, can reliably 
predict unknowns. 

Predicted constituent values from PLS are cross-validation values 
for the calibration set. The PLS calibration model was used to 
predict the constituent values of the validation set that were not 
part of the calibration set. These values for red and white wheat 
cultivars are given in Tables I and II. For classification, predicted 
constituent values had to be above or below a set threshold value. 
Predicted values >1.41 were considered spectra of white wheat, 
and those <1.41 were considered spectra of red wheat. The value 

1.41 is a correction applied to the value of 1.5 for equal number of 
red and white samples. PLS results are summarized in Table III. 

Classification accuracies were 91% for red and 70% for white 
wheat cultivars for the calibration set and 67% for red and 75% 
for white wheat in the validation set. Considering that the cali-
bration was done with limited samples and many of the samples 
in the test set were outliers from preliminary calibrations, the 
slightly lower prediction accuracy for the test set is not surprising. 

A plot of β-coefficients of the PLS analysis vs. fluorescence 
wavelength is shown in Fig. 1B. Wavelengths corresponding to the 
maximum (587 ± 35 nm) and minimum (425 ± 20 nm) are im-
portant for classification of spectra. A comparison of Fig. 1 A and B, 
shows how the β-coefficients in PLS analysis are related to the 
actual emission spectra of red and white wheat. Previously, we 
have made a similar comparison of a plot of the β-coefficients in 
PLS analysis with the NIR spectrum of a coating in wheat (Fig. 3 
in Ram et al 2002b). At ≈587 nm, white wheats exhibited more 
fluorescence than red wheats, and at ≈425 nm, red wheats exhib-
ited more fluorescence than white wheats. 

Neural Network Analysis  
NNA was conducted using fluorescence data taken 2 nm apart, 

that is, 151 input PE values (N/V = 0.59). NNA returned two output 
PE values for each sample spectrum. The sample set used in PLS 
calibration set was used to train the network. The trained network 
was used to test the unknowns in the same test set that was used 
in PLS validation. The output PE values for the learning set (same 
as the PLS calibration set) and the test set (same as that used in 
PLS) are given in Tables I and II for the red and white wheat 
cultivars. The value of the first PE was greater than that for the 
second for red wheat cultivars and vice versa for the white 
wheats. A summary of the results of NNA is presented in Table 
III. NNA classification accuracies were 97% for red and 74% for 
white wheat cultivars for the calibration set and 73% for red and 
75% for white wheat in the validation set. As we stated earlier for 
PLS analysis, considering that the calibration was done with 
limited samples and many of the samples in the test set were 
outliers from preliminary calibrations, the slightly lower predic-
tion accuracy for the test set is not surprising. 

Tables I and II show that NNA prediction is very similar to PLS 
prediction for every sample. PLS analysis is a linear regression 
model and NNA is for linear and curvilinear models; similarities 
in prediction values by the two methods for each and every 
sample of red and white cultivars could be noted. 

Analysis of spectra of 89 samples by NNA with 31 input PE 
values (thus improving the samples/variables ratio, which generally 
improves the reliability of the prediction values, to 2.87) using 
fluorescence data 10 nm apart, yielded nearly the same results as 
with 151 PE values. Results nearly identical to that given in Table 
III for 151 PE values or variables (data every 2 nm apart) were 
obtained. Fluorescence emission bands were broad, and including 
data points 10-nm apart, was sufficient for good classification. 

Factors Affecting Analysis of Fluorescence Spectra 
A number of factors affected the analysis of spectra. The emis-

sion intensity was variable. The variations in intensities were prob-
ably due to how the kernels were packed and oriented in the 
cuvette. Rainfall before harvest also affected the fluorescence of 
the samples. Kernel morphology, grain dust, broken kernels, chaff, 
and straw contamination contributed to the emission spectra. 
Also, if a wheat sample contained a low percentage of kernels of 
contrasting color, it was possible that the emission spectrum 
could be modified by the minor component. Most white wheat 
kernels typically had 2–5% red wheat mixed in them and, 
occasionally, there was white wheat mixed in red wheat as well. 
Considering these factors, the correlation of the wheat color class 
with the fluorescence emission spectra is good. Other factors that 
affected the classification here were 1) the sample set included a 
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large number of samples that were difficult to classify visually 
and rain-bleached samples, and 2) not having multiple spectra for 
each of the samples (because of the variability in the spectra). 

Characterization of fluorescent compounds extracted from the 
surfaces (bran layers) of red and white wheat is currently being 
studied. Some p-hydroxycinnamic acids such as ferulic, coumaric, 
and caffeic acids appear to be responsible for fluorescence at 
≈425 nm. Fluorescence in the range 550–610 nm could possibly 
arise from flavonoids like apigenin (≈540 nm green), quercetin 
(≈580 nm yellow), and luteolin (≈600 nm, red), or from caro-
tenoids such as xanthophylls and lutein (Zandomeneghi 1999). It 
appears there are slight differences in both categories of com-
pounds in red and white wheat. 

Wheat samples exhibited greater fluorescence after the NaOH 
test (Fig. 2). Red wheat samples had a larger increase in fluores-
cence intensity than white wheat samples. In red wheat samples, 
fluorescence at higher wavelengths appeared washed out. Both 
red and white wheat samples appeared coated with ferulic acid 
(and perhaps other compounds not contributing to the net fluo-
rescence) after the NaOH test, based on the appearance under the 
blacklight and the fluorescence spectrum (λmax ≈ 450 nm). 

Effect of Rainfall Before Harvest on Fluorescence  
The effect of rainfall on the fluorescence spectra of wheat har-

vested after rainfall was variable. The effect was similar to that 
described for the NaOH test above but much weaker. Generally, 
fluorescence increased slightly more, particularly with emission 
at ≈450 nm, for red wheat samples than for white wheat samples. 

CONCLUSIONS 

All cultivars of red and white wheats that were tested exhibited 
natural fluorescence when viewed under a UV light in a viewing 
cabinet; fluorescence was not uniform on the surfaces of the 
kernels. This fluorescence may be due to components from within 
the whole kernel and not merely from the epidermal layers, and it 
may be influenced by physical characteristics of the kernels. 
Although weak in intensity, the fluorescence spectra of bulk samples 
of red and white wheats were different. Ninety-two fluorescence 
spectra of red and white wheat cultivars were classified by PLS 
and NNA analyses of their natural fluorescence spectra. Further 
studies may involve use of spectrofluorometers with fiber optic 
cables and plate readers to determine whether the fluorescence 
could classify single kernels of wheat according to their color class. 

This research shows there is some potential for fluorescence to 
be practical for distinguishing red and white wheat. Spectrophoto-
meters are not expensive, chemicals are not needed, and there is 
no sample preparation in this method. However, one might need to 
collect several spectra of the same sample to obtain correct classi-
fication. 
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Fig. 2. Fluorescence emission spectra (obtained with 350 nm excitation)
of red (R) and white (W) wheat before and after treatment with NaOH.
Representative samples are Tam107 (R) and Oro Blanco (W). 


